Sort Results

List View Easy View
SearchResultCount:"1"
Description: L(+)-Aspartic acid 99 metals_low
Catalog Number: 43317.22
UOM: 1 * 100 g
Supplier: Thermo Fisher Scientific

Description: Component of the N-oligosaccharyl transferase enzyme which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). Loss of the DAD1 protein triggers apoptosis.
Catalog Number: BOSSBS-6800R
UOM: 1 * 100 µl
Supplier: Bioss


Description: Sodium-dependent amino acids transporter that has a broad substrate specificity, with a preference for zwitterionic amino acids. It accepts as substrates all neutral amino acids, including glutamine, asparagine, and branched-chain and aromatic amino acids, and excludes methylated, anionic, and cationic amino acids. May also be activated by insulin. Through binding of the fusogenic protein syncytin-1/ERVW-1 may mediate trophoblasts syncytialization, the spontaneous fusion of their plasma membranes, an essential process in placental development (PubMed:10708449, PubMed:23492904). Acts as a cell surface receptor for feline endogenous virus RD114, baboon M7 endogenous virus and type D simian retroviruses (PubMed:10051606, PubMed:10196349).
Catalog Number: BOSSBS-0473R-CY3
UOM: 1 * 100 µl
Supplier: Bioss


Description: Sodium-dependent amino acids transporter that has a broad substrate specificity, with a preference for zwitterionic amino acids. It accepts as substrates all neutral amino acids, including glutamine, asparagine, and branched-chain and aromatic amino acids, and excludes methylated, anionic, and cationic amino acids. May also be activated by insulin. Through binding of the fusogenic protein syncytin-1/ERVW-1 may mediate trophoblasts syncytialization, the spontaneous fusion of their plasma membranes, an essential process in placental development (PubMed:10708449, PubMed:23492904). Acts as a cell surface receptor for feline endogenous virus RD114, baboon M7 endogenous virus and type D simian retroviruses (PubMed:10051606, PubMed:10196349).
Catalog Number: BOSSBS-0473R-CY5.5
UOM: 1 * 100 µl
Supplier: Bioss


Description: Component of the N-oligosaccharyl transferase enzyme which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). Loss of the DAD1 protein triggers apoptosis.
Catalog Number: BOSSBS-6800R-CY5.5
UOM: 1 * 100 µl
Supplier: Bioss


Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
Catalog Number: BOSSBS-12937R-FITC
UOM: 1 * 100 µl
Supplier: Bioss


Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
Catalog Number: BOSSBS-12937R-A647
UOM: 1 * 100 µl
Supplier: Bioss


Description: L(+)-Aspartic acid
Catalog Number: APOSBIA0705-500G
UOM: 1 * 500 g
Supplier: Apollo Scientific

Description: Chiral intermediate for pharmaceuticals and agrochemicals; Materials for peptides.
Catalog Number: APOSBIA0866-1KG
UOM: 1 * 1 kg
Supplier: Apollo Scientific


Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
Catalog Number: BOSSBS-12937R-CY7
UOM: 1 * 100 µl
Supplier: Bioss


Description: Glycosylation of asparagine residues in Asn-X-Ser/Thr motifs in proteins commonly occur in the lumen of the endoplasmic reticulum (ER). Glucosidase I catalyzes the first step in the N-linked oligosaccharide processing pathway. It specifically removes the distal alpha 1,2-linked glucose residue from the Glc3-Man9-GlcNAc2 oligosaccharide precursor. Glucosidase I contains a short cytosolic tail, a single pass transmembrane domain and a large C-terminal catalytic domain located on the luminal side of the ER. Mutations in the gene encoding Glucosidase I result in the congenital disorder glycosylation (CDG-IIb), which is characterized by generalized hypotonia, dysmorphic features, hepatomegaly, hypoventilation, feeding problems, seizures and death. Two point mutations in the Glucosidase I gene have been identified and result in amino acid substitutions, namely Arg486Thr and Phe652Leu, that affect polypeptide folding and active site formation.
Catalog Number: BOSSBS-13322R-FITC
UOM: 1 * 100 µl
Supplier: Bioss


Description: L(+)-Asparagine
Catalog Number: MOLE15650008-100G
UOM: 1 * 100 g
Supplier: Molekula


Description: Component of the N-oligosaccharyl transferase enzyme which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). Loss of the DAD1 protein triggers apoptosis.
Catalog Number: BOSSBS-6800R-FITC
UOM: 1 * 100 µl
Supplier: Bioss


Description: Component of the N-oligosaccharyl transferase enzyme which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). Loss of the DAD1 protein triggers apoptosis.
Catalog Number: BOSSBS-6800R-HRP
UOM: 1 * 100 µl
Supplier: Bioss


Description: Component of the N-oligosaccharyl transferase enzyme which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). Loss of the DAD1 protein triggers apoptosis.
Catalog Number: BOSSBS-6800R-A555
UOM: 1 * 100 µl
Supplier: Bioss


Description: L-Asparagine is used in cell culture media and is a component of MEM non-essential amino acids solution. L-Asparagine has been shown to enhance ornithine decarboxylase activity in cultured human colon adenocarcinoma Caco-2 cells and in cultured IEC-6 intestinal epithelial cells. Spore germination in Bacillus subtilis has been increased in the presence of L-asparagine.
Catalog Number: ICNA0210079425
UOM: 1 * 25 g
Supplier: MP Biomedicals


1 - 1 of 1