You Searched For: Amberlite\u00AE+IR120+Hydrogen+form


32 191  results were found

SearchResultCount:"32191"

Sort Results

List View Easy View

Rate These Search Results

Supplier: HAMILTON BONADUZ
Description: HC-75 columns separate compounds through ligand exchange. The different forms of the HC-75 (hydrogen, calcium and lead) each provide a unique selectivity for separating varying types of charged analytes based on electronegativity toward the counterion.

Supplier: MP Biomedicals
Description: Storage: -20°C, desiccate
This is an ultrapure NAD, chromatographically purified to remove trace inhibitors.
β-NAD, a pyridine nucleotide and biologically active form of nicotinic acid, is a coenzyme necessary for the catalytic reaction of certain enzymes. It occurs in living cells primarily in the oxidized state. Serves as a coenzyme of the dehydrogenases, especially in the dehydrogenation of primary and secondary alcohols. NAD usually acts as a hydrogen acceptor, forming NADH which then serves as a hydrogen donor in the respiratory chain.
Many metabolites and enzymes of biological interest are present in tissues at low concentrations. With the use of β-NAD as a catalyst intermediate and several enzymes in a multistep system, known as enzyme cycling, much greater sensitivity for detection of these components is achieved. The reduced form, β-NADH, is fluorescent whereas β-NAD is not. This difference in fluorescence provides a sensitive fluorescent measurement of the oxidized or reduced pyridine nucleotides at concentrations down to 10-7 M.
Electron acceptor. β-NAD is a carrier for hydride ion, forming b-NADH. Hydride ion is enzymatically removed from a substrate molecule by the action of dehydrogenases such as malic dehydrogenase and lactic dehydrogenase. Such enzymes catalyze the reversible transfer of a hydride ion from malate or lactate to b-NAD to form the reduced product, b-NADH. Unlike b-NAD which has no absorbance at 340 nm, b-NADH absorbs at 340 nm (EmM = 6.22). The increase in absorbance at 340 nm with the formation of b-NADH is the basis for measurement of activity of many enzymes.

New Transparency for European Customers

Have you noticed our new improved visibility on stock location at checkout?

Find out more

Enhancement to stock locations

Catalog Number: (PRSI91-566)
Supplier: ProSci Inc.
Description: Superoxide Dismutase (SOD2) is a number of the iron/manganese superoxide dismutase family. SOD2 is a mitochondrial protein that forms a homotetramer and binds one manganese ion per subunit. The SOD2 protein transforms toxic superoxide and a byproduct of the mitochondrial electron transport chain into hydrogen peroxide and diatomic oxygen. Genetic variation in SOD2 is associated with microvascular complications of diabetes type 6 (MVCD6), idiopathic cardiomyopathy (IDC), sporadic motor neuron disease, and cancer. SOD2 destroys superoxide anion radicals which are usually produced within the cells and which are toxic to biological systems.
UOM: 1 * 50 µG


Catalog Number: (PRSI26-935)
Supplier: ProSci Inc.
Description: PRDX5 is a member of the peroxiredoxin family of antioxidant enzymes, which reduce hydrogen peroxide and alkyl hydroperoxides. The encoded protein may play an antioxidant protective role in different tissues under normal conditions and during inflammatory processes. This protein interacts with peroxisome receptor 1. The crystal structure of this protein in its reduced form has been resolved to 1.5 angstrom resolution. This gene uses alternate in-frame translation initiation sites to generate mitochondrial or peroxisomal/cytoplasmic forms.This gene encodes a member of the peroxiredoxin family of antioxidant enzymes, which reduce hydrogen peroxide and alkyl hydroperoxides. The encoded protein may play an antioxidant protective role in different tissues under normal conditions and during inflammatory processes. This protein interacts with peroxisome receptor 1. The crystal structure of this protein in its reduced form has been resolved to 1.5 angstrom resolution. This gene uses alternate in-frame translation initiation sites to generate mitochondrial or peroxisomal/cytoplasmic forms. Three transcript variants encoding distinct isoforms have been identified for this gene.
UOM: 1 * 50 µG


Supplier: Thermo Fisher Scientific
Description: Thermo Scientific Pierce coomassie brilliant blue dyes are composed of one of the most common forms of coomassie dye, which is a key component of various colorimetric protein gel stains. Coomassie R-250 and G-250 dyes are two chemical forms of a disulphonated triphenylmethane compound that is commonly used as the basis of stains for detection of proteins in gel electrophoresis and bradford-type assay reagents for protein quantitation. The R-250 (red-tinted) form lacks two methyl groups that are present in the G-250 (green-tinted) form, which is also called colloidal coomassie dye.
Catalog Number: (SPCMD1033-500MLGL)
Supplier: Spectrum Chemical
Description: Diethanolamine, Reagent, ACS is also referred to as DEA, is an organic compound that in its pure form is a white solid but it is most often encountered as a clear liquid that has a viscous texture. It is a secondary amine and diol and is water soluble. It is used as a corrosion inhibitor and surfactant that is used in the oil refining industry to help remove hydrogen sulfide from sour gas. As an ACS grade reagent, Spectrum Chemical manufactured compound is used as the quality standard against which other substances are grade and has met the toughest regulatory standards for quality and pureness
UOM: 1 * 500 mL


Supplier: VARIAN
Description: The MetaCarb™ line of carbohydrate columns provides high resolution columns for applications requiring high performance carbohydrate and organic acid analysis. These columns contain sulfonated polystyrene resins in the Calcium (87C), Hydrogen (87H), and Lead (87P) forms, and provide a wide range of selectivities for carbohydrate and organic analysis. They are widely used in the food and beverage industries for analysis of sweeteners, corn and cane sugars, fruit juices, soft drinks, beer and dairy products.

Catalog Number: (PRSI96-072)
Supplier: ProSci Inc.
Description: Carbonic anhydrases (CAs) are a large family of zinc metalloenzymes. CAs form a family of enzymes that catalyse the rapid interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa), a reversible reaction that occurs rather slowly in the absence of a catalyst. One of the functions of the enzyme in animals is to interconvert carbon dioxide and bicarbonate to maintain acid-base balance in blood and other tissues, and to help transport carbon dioxide out of tissues. The active site of most carbonic anhydrases contains a zinc ion. They are, therefore, classified as metalloenzymes. There are at least five distinct CA families (α, β, γ, δ and ε). These families have no significant amino acid sequence similarity and in most cases are thought to be an example of convergent evolution. The α-CAs are found in humans.
Carbonic anhydrase II (CA2) is also known as Carbonate dehydratase II, Carbonic anhydrase C, is one of fourteen forms of human α carbonic anhydrases. Defects in this enzyme are associated with osteopetrosis and renal tubular acidosis. Renal carbonic anhydrase allows the reabsorption of sodium ions in the proximal tubule. Carbonic anhydrase II has been shown to interact with Band 3 and Sodium-hydrogen antiporter 1.
UOM: 1 * 100 µG


Catalog Number: (PRSI91-252)
Supplier: ProSci Inc.
Description: Apoptosis-Inducing Factor 1, Mitochondrial (AIFM1) is a flavoprotein essential for nuclear disassembly in apoptotic cells that is found in the mitochondrial intermembrane space in healthy cells. During apoptosis, it is translocated from the mitochondria to the nucleus to function as a proapoptotic factor in a caspase-independent pathway, while in normal mitochondria, it functions as an antiapoptotic factor via its oxidoreductase activity. The soluble form (AIFsol) found in the nucleus induces parthanatos i.e., caspase-independent fragmentation of chromosomal DNA. AIFM1 interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates casapse-7 to amplify apoptosis. It binds to DNA in a sequence-independent manner and plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells.
UOM: 1 * 50 µG


Supplier: MP Biomedicals
Description: Guanidine Hydrochloride is a protein denaturant and thus having an important role in molecular weight determinations.
Guanidine Hydrochloride is a strong chaotropic agent useful for the denaturation and subsequent refolding of proteins. This strong denaturant can solubilize insoluble or denatured proteins such as inclusion bodies. This can be used as the first step in refolding proteins or enzymes into their active form. Urea and dithiothreitol (DTT) may also be necessary. Guanidine HCl is used in the isolation of RNA to dissociate the nucleoprotein into its nucleic acid and protein moieties. It is an inhibitor of RNase. Highly concentrated (6 - 8 M) Guanidine HCl solutions are used to denature native globular proteins. It apparently disrupts hydrogen bonds which hold the protein in its unique structure. However, there also is evidence suggesting that guanidine hydrocholoride may disrupt hydrophobic interactions by promoting the solubility of hydrophobic residues in aqueous solutions.
Catalog Number: (PRSI92-519)
Supplier: ProSci Inc.
Description: Hemoglobin subunit theta-1 is a protein that in humans is encoded by the HBQ1 gene. Theta-globin mRNA is originally found in human fetal erythroid tissue but not in adult erythroid or other nonerythroid tissue. Theta-1 is a member of the human alpha-globin gene cluster that includes five functional genes and two pseudogenes. Research supports a transcriptionally active role for the gene and a functional role for the peptide in specific cells, possibly those of early erythroid tissue. Hemoglobin has a quaternary structure characteristically composed of many multi-subunit globular proteins. Most of the amino acids in hemoglobin form alpha helices, connected by short non-helical segments. Hydrogen bonds stabilize the helical sections inside this protein, causing attractions within the molecule, folding each polypeptide chain into a specific shape. Hemoglobin's quaternary structure comes from its four subunits in roughly a tetrahedral arrangement.
UOM: 1 * 50 µG


Catalog Number: (PRSI96-365)
Supplier: ProSci Inc.
Description: Human Immunodeficiency Virus (HIV) can be divided into two major types, HIV type 1 (HIV-1) and HIV type 2 (HIV-2). HIV-1 is related to viruses found in chimpanzees and gorillas living in western Africa. HIV-2 is related to viruses found in sooty mangabeys. HIV-1 viruses may be further divided into groups. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Some of the HIV-1 group M subtypes are known to be more virulent or are resistant to different medications. HIV-2 viruses are thought to be less virulent and transmissible than HIV-1 M group viruses.
Envelope glycoprotein GP120 (or gp120) is the name of the glycoprotein which forms the spikes sticking out of a HIV virus particle. gp120 is essential for virus entry into cells as it plays a vital role in seeking out specific cell surface receptors for entry. Three gp120s, bound as heterodimers to a transmembrane glycoprotein, gp41, are thought to combine in a trimer to form the envelope spike, which is involved in virus-cell attachment. One half of the molecular weight of gp120 is due to the carbohydrate side chains (the "glyco-" in "glycoprotein"). These are sugar residues which form something almost like a sugar "dome" over the gp120 spikes. This dome prevents gp120 from being recognised by the human immune response. As the HIV virus and the human CD4 cell come together, the gp120 binding site "snaps open" at the last minute.The glycoprotein gp120 is anchored to the viral membrane, or envelope, via non-covalent bonds with the transmembrane glycoprotein, gp41. It is involved in entry into cells by binding to CD4 receptors, particularly helper T-cells. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds.
UOM: 1 * 100 µG


Catalog Number: (PRSI96-366)
Supplier: ProSci Inc.
Description: Human Immunodeficiency Virus (HIV) can be divided into two major types, HIV type 1 (HIV-1) and HIV type 2 (HIV-2). HIV-1 is related to viruses found in chimpanzees and gorillas living in western Africa. HIV-2 is related to viruses found in sooty mangabeys. HIV-1 viruses may be further divided into groups. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Some of the HIV-1 group M subtypes are known to be more virulent or are resistant to different medications. HIV-2 viruses are thought to be less virulent and transmissible than HIV-1 M group viruses.
Envelope glycoprotein GP120 (or gp120) is the name of the glycoprotein which forms the spikes sticking out of a HIV virus particle. gp120 is essential for virus entry into cells as it plays a vital role in seeking out specific cell surface receptors for entry. Three gp120s, bound as heterodimers to a transmembrane glycoprotein, gp41, are thought to combine in a trimer to form the envelope spike, which is involved in virus-cell attachment. One half of the molecular weight of gp120 is due to the carbohydrate side chains (the "glyco-" in "glycoprotein"). These are sugar residues which form something almost like a sugar "dome" over the gp120 spikes. This dome prevents gp120 from being recognised by the human immune response. As the HIV virus and the human CD4 cell come together, the gp120 binding site "snaps open" at the last minute.The glycoprotein gp120 is anchored to the viral membrane, or envelope, via non-covalent bonds with the transmembrane glycoprotein, gp41. It is involved in entry into cells by binding to CD4 receptors, particularly helper T-cells. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds.
UOM: 1 * 100 µG


Catalog Number: (PRSI96-367)
Supplier: ProSci Inc.
Description: Human Immunodeficiency Virus (HIV) can be divided into two major types, HIV type 1 (HIV-1) and HIV type 2 (HIV-2). HIV-1 is related to viruses found in chimpanzees and gorillas living in western Africa. HIV-2 is related to viruses found in sooty mangabeys. HIV-1 viruses may be further divided into groups. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Some of the HIV-1 group M subtypes are known to be more virulent or are resistant to different medications. HIV-2 viruses are thought to be less virulent and transmissible than HIV-1 M group viruses.
Envelope glycoprotein GP120 (or gp120) is the name of the glycoprotein which forms the spikes sticking out of a HIV virus particle. gp120 is essential for virus entry into cells as it plays a vital role in seeking out specific cell surface receptors for entry. Three gp120s, bound as heterodimers to a transmembrane glycoprotein, gp41, are thought to combine in a trimer to form the envelope spike, which is involved in virus-cell attachment. One half of the molecular weight of gp120 is due to the carbohydrate side chains (the "glyco-" in "glycoprotein"). These are sugar residues which form something almost like a sugar "dome" over the gp120 spikes. This dome prevents gp120 from being recognised by the human immune response. As the HIV virus and the human CD4 cell come together, the gp120 binding site "snaps open" at the last minute.The glycoprotein gp120 is anchored to the viral membrane, or envelope, via non-covalent bonds with the transmembrane glycoprotein, gp41. It is involved in entry into cells by binding to CD4 receptors, particularly helper T-cells. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds.
UOM: 1 * 100 µG


Supplier: Merck
Description: ORBO™ sorbent tubes contain two beds of the same selective adsorbent seperated by glass wool or foam, for gas and vapor sampling.

Supplier: MP Biomedicals
Description: Storage: Room Temperature
Guanidine hydrochloride consists of a network of guanidinium cations and chloride anions linked by N–H•••Cl hydrogen bonds, it is a strong chaotropic agent. Guanidine HCl may agglomerate upon storage. It may appear as a free-flowing crystalline powder, a free flowing powder with solid material dispersed throughout, or a solid. The quality of the product does not appear to be affected and solutions prepared from the free-flowing and lumpy guanidine HCl appear identical.
Guanidine hydrochloride can be used as the first step in refolding proteins or enzymes into their active form. Urea and dithiothreitol (DTT) may also be necessary. Also used in the isolation of RNA. Guanidine hydrochloride is a strong chaotropic agent useful for the denaturation and subsequent refolding of protein, it can solubilize insoluble or denatured proteins such as inclusion bodies and be used for the recovery of periplasmic proteins.

Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 8822222.
129 - 144 of 32 191
no targeter for Bottom