You Searched For: Copper+(II)+ethylenediamine


18 933  results were found

SearchResultCount:"18933"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (BOSSBS-3896R-A488)
Supplier: Bioss
Description: Superoxide dismutase (SOD) is an antioxidant enzyme involved in the defense system against reactive oxygen species (ROS). SOD catalyzes the dismutation reaction of superoxide radical anion (O2-) to hydrogen peroxide, which is then catalyzed to innocuous O2 and H2O by glutathione peroxidase and catalase. Several classes of SOD have been identified. These include intracellular copper, zinc SOD (Cu, Zn-SOD/SOD-1), mitochondrial manganese SOD (Mn-SOD/SOD-2) and extracellular Cu, Zn-SOD (EC-SOD/SOD-3). SOD1 is found in all eukaryotic species as a homodimeric 32 kDa enzyme containing one each of Cu and Zn ion per subunit. The manganese containing 80 kDa tetrameric enzyme SOD2, is located in the mitochondrial matrix in close proximity to a primary endogenous source of superoxide, the mitochondrial respiratory chain. SOD3 is a heparin-binding multimer of disulfide-linked dimers, primarily expressed in human lungs, vessel walls and airways. SOD4 is a copper chaperone for superoxide dismutase (CCS), which specifically delivers Cu to copper/zinc superoxide dismutase. CCS may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3896R-A750)
Supplier: Bioss
Description: Superoxide dismutase (SOD) is an antioxidant enzyme involved in the defence system against reactive oxygen species (ROS). SOD catalyses the dismutation reaction of superoxide radical anion (O2-) to hydrogen peroxide, which is then catalysed to innocuous O2 and H2O by glutathione peroxidase and catalase. Several classes of SOD have been identified. These include intracellular copper, zinc SOD (Cu, Zn-SOD/SOD-1), mitochondrial manganese SOD (Mn-SOD/SOD-2) and extracellular Cu, Zn-SOD (EC-SOD/SOD-3). SOD1 is found in all eukaryotic species as a homodimeric 32 kDa enzyme containing one each of Cu and Zn ion per subunit. The manganese containing 80 kDa tetrameric enzyme SOD2, is located in the mitochondrial matrix in close proximity to a primary endogenous source of superoxide, the mitochondrial respiratory chain. SOD3 is a heparin-binding multimer of disulfide-linked dimers, primarily expressed in human lungs, vessel walls and airways. SOD4 is a copper chaperone for superoxide dismutase (CCS), which specifically delivers Cu to copper/zinc superoxide dismutase. CCS may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.
UOM: 1 * 100 µl


Catalog Number: (92186.)
Supplier: Biotium
Description: Biotin picolyl azide reacts with alkyne to form 1,2,3-triazole by 1,3-dipolar Huisgen cycloaddition through the use of a much lower copper (I) concentration without sacrificing reaction efficiency.
UOM: 1 * 0,5 mg


Catalog Number: (BOSSBS-3896R-CY5)
Supplier: Bioss
Description: Superoxide dismutase (SOD) is an antioxidant enzyme involved in the defense system against reactive oxygen species (ROS). SOD catalyzes the dismutation reaction of superoxide radical anion (O2-) to hydrogen peroxide, which is then catalyzed to innocuous O2 and H2O by glutathione peroxidase and catalase. Several classes of SOD have been identified. These include intracellular copper, zinc SOD (Cu, Zn-SOD/SOD-1), mitochondrial manganese SOD (Mn-SOD/SOD-2) and extracellular Cu, Zn-SOD (EC-SOD/SOD-3). SOD1 is found in all eukaryotic species as a homodimeric 32 kDa enzyme containing one each of Cu and Zn ion per subunit. The manganese containing 80 kDa tetrameric enzyme SOD2, is located in the mitochondrial matrix in close proximity to a primary endogenous source of superoxide, the mitochondrial respiratory chain. SOD3 is a heparin-binding multimer of disulfide-linked dimers, primarily expressed in human lungs, vessel walls and airways. SOD4 is a copper chaperone for superoxide dismutase (CCS), which specifically delivers Cu to copper/zinc superoxide dismutase. CCS may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.
UOM: 1 * 100 µl


Supplier: Thermo Fisher Scientific
Description: Stabilized with copper
Supplier: Biotium
Description: CF™ dye azide reacts with alkyne to form 1,2,3-triazole by copper(I) catalysed 1,3-dipolar Huisgen cycloaddition. It could also undergo Staudinger ligation with a phosphine containing compound.

Catalog Number: (BOSSBS-10529R)
Supplier: Bioss
Description: This gene encodes a member of the semicarbazide-sensitive amine oxidase family. Copper amine oxidases catalyze the oxidative conversion of amines to aldehydes in the presence of copper and quinone cofactor. The encoded protein is localized to the cell surface, has adhesive properties as well as monoamine oxidase activity, and may be involved in leukocyte trafficking. Alterations in levels of the encoded protein may be associated with many diseases, including diabetes mellitus. A pseudogene of this gene has been described and is located approximately 9-kb downstream on the same chromosome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2013]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-10529R-CY5)
Supplier: Bioss
Description: This gene encodes a member of the semicarbazide-sensitive amine oxidase family. Copper amine oxidases catalyze the oxidative conversion of amines to aldehydes in the presence of copper and quinone cofactor. The encoded protein is localized to the cell surface, has adhesive properties as well as monoamine oxidase activity, and may be involved in leukocyte trafficking. Alterations in levels of the encoded protein may be associated with many diseases, including diabetes mellitus. A pseudogene of this gene has been described and is located approximately 9-kb downstream on the same chromosome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2013]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-10529R-A750)
Supplier: Bioss
Description: This gene encodes a member of the semicarbazide-sensitive amine oxidase family. Copper amine oxidases catalyse the oxidative conversion of amines to aldehydes in the presence of copper and quinone cofactor. The encoded protein is localised to the cell surface, has adhesive properties as well as monoamine oxidase activity, and may be involved in leukocyte trafficking. Alterations in levels of the encoded protein may be associated with many diseases, including diabetes mellitus. A pseudogene of this gene has been described and is located approximately 9-kb downstream on the same chromosome. Alternative splicing results in multiple transcript variants.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-10529R-A680)
Supplier: Bioss
Description: This gene encodes a member of the semicarbazide-sensitive amine oxidase family. Copper amine oxidases catalyse the oxidative conversion of amines to aldehydes in the presence of copper and quinone cofactor. The encoded protein is localised to the cell surface, has adhesive properties as well as monoamine oxidase activity, and may be involved in leukocyte trafficking. Alterations in levels of the encoded protein may be associated with many diseases, including diabetes mellitus. A pseudogene of this gene has been described and is located approximately 9-kb downstream on the same chromosome. Alternative splicing results in multiple transcript variants.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-10529R-CY3)
Supplier: Bioss
Description: This gene encodes a member of the semicarbazide-sensitive amine oxidase family. Copper amine oxidases catalyze the oxidative conversion of amines to aldehydes in the presence of copper and quinone cofactor. The encoded protein is localized to the cell surface, has adhesive properties as well as monoamine oxidase activity, and may be involved in leukocyte trafficking. Alterations in levels of the encoded protein may be associated with many diseases, including diabetes mellitus. A pseudogene of this gene has been described and is located approximately 9-kb downstream on the same chromosome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2013]
UOM: 1 * 100 µl


Supplier: MP Biomedicals
Description: Storage: Store at Room Temperature (15-30 °C).
Ethylenediamine Tetraacetic Acid is a polyamino carboxylic acid hexadentate ligand and a chelating agent. This product is designated as Molecular Biology grade and is suitable for molecular biology applications.
Ethylenediamine Tetraacetic Acid is a chelator of divalent cations. It also inhibits enzymes, such as metalloproteases, that require divalent cations for activity.

Catalog Number: (BOSSBS-3896R)
Supplier: Bioss
Description: Superoxide dismutase (SOD) is an antioxidant enzyme involved in the defense system against reactive oxygen species (ROS). SOD catalyzes the dismutation reaction of superoxide radical anion (O2-) to hydrogen peroxide, which is then catalyzed to innocuous O2 and H2O by glutathione peroxidase and catalase. Several classes of SOD have been identified. These include intracellular copper, zinc SOD (Cu, Zn-SOD/SOD-1), mitochondrial manganese SOD (Mn-SOD/SOD-2) and extracellular Cu, Zn-SOD (EC-SOD/SOD-3). SOD1 is found in all eukaryotic species as a homodimeric 32 kDa enzyme containing one each of Cu and Zn ion per subunit. The manganese containing 80 kDa tetrameric enzyme SOD2, is located in the mitochondrial matrix in close proximity to a primary endogenous source of superoxide, the mitochondrial respiratory chain. SOD3 is a heparin-binding multimer of disulfide-linked dimers, primarily expressed in human lungs, vessel walls and airways. SOD4 is a copper chaperone for superoxide dismutase (CCS), which specifically delivers Cu to copper/zinc superoxide dismutase. CCS may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.
UOM: 1 * 100 µl


Supplier: Thermo Fisher Scientific
Description: Stabilized with copper
Catalog Number: (BOSSBS-3896R-CY3)
Supplier: Bioss
Description: Superoxide dismutase (SOD) is an antioxidant enzyme involved in the defense system against reactive oxygen species (ROS). SOD catalyzes the dismutation reaction of superoxide radical anion (O2-) to hydrogen peroxide, which is then catalyzed to innocuous O2 and H2O by glutathione peroxidase and catalase. Several classes of SOD have been identified. These include intracellular copper, zinc SOD (Cu, Zn-SOD/SOD-1), mitochondrial manganese SOD (Mn-SOD/SOD-2) and extracellular Cu, Zn-SOD (EC-SOD/SOD-3). SOD1 is found in all eukaryotic species as a homodimeric 32 kDa enzyme containing one each of Cu and Zn ion per subunit. The manganese containing 80 kDa tetrameric enzyme SOD2, is located in the mitochondrial matrix in close proximity to a primary endogenous source of superoxide, the mitochondrial respiratory chain. SOD3 is a heparin-binding multimer of disulfide-linked dimers, primarily expressed in human lungs, vessel walls and airways. SOD4 is a copper chaperone for superoxide dismutase (CCS), which specifically delivers Cu to copper/zinc superoxide dismutase. CCS may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3896R-FITC)
Supplier: Bioss
Description: Superoxide dismutase (SOD) is an antioxidant enzyme involved in the defense system against reactive oxygen species (ROS). SOD catalyzes the dismutation reaction of superoxide radical anion (O2-) to hydrogen peroxide, which is then catalyzed to innocuous O2 and H2O by glutathione peroxidase and catalase. Several classes of SOD have been identified. These include intracellular copper, zinc SOD (Cu, Zn-SOD/SOD-1), mitochondrial manganese SOD (Mn-SOD/SOD-2) and extracellular Cu, Zn-SOD (EC-SOD/SOD-3). SOD1 is found in all eukaryotic species as a homodimeric 32 kDa enzyme containing one each of Cu and Zn ion per subunit. The manganese containing 80 kDa tetrameric enzyme SOD2, is located in the mitochondrial matrix in close proximity to a primary endogenous source of superoxide, the mitochondrial respiratory chain. SOD3 is a heparin-binding multimer of disulfide-linked dimers, primarily expressed in human lungs, vessel walls and airways. SOD4 is a copper chaperone for superoxide dismutase (CCS), which specifically delivers Cu to copper/zinc superoxide dismutase. CCS may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 8822222.
689 - 704 of 18 933
no targeter for Bottom