You Searched For: Memantine+lactose+adduct


340  results were found

SearchResultCount:"340"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (PRSI33-985)
Supplier: ProSci Inc.
Description: UCHL1/PGP9.5 is a member of a gene family whose products hydrolyze small C-terminal adducts of ubiquitin to generate the ubiquitin monomer. Expression of PGP9.5 is highly specific to neurons and to cells of the diffuse neuroendocrine system and their tumors. It is abundantly present in all neurons (accounts for 1-2% of total brain protein), expressed specifically in neurons and testis/ovary. [Wiki].
UOM: 1 * 100 µG

New Product


Catalog Number: (BOSSBS-11131R-CY3)
Supplier: Bioss
Description: Alpha-lactalbumin is the B protein of lactose synthetase secreted by the mammary epithelial cells. It is a potent Ca2+-elevating and apoptosis-inducing agent with broad, yet selective, cytotoxic activity. Multimeric ?lactalbumin has been shown to kill all transformed, embryonic and lymphoid cells tested, but not mature epithelial elements. This suggests that milk contributes to mucosal immunity not only by furnishing antimicrobial molecules but also by policing the function of lymphocytes and epithelium. ?lactalbumin may be helpful in discovering the site of origin of metastatic breast tumors. Human lactalbumin contains 123 amino acid residues. Comparison of the 5' flanking sequences of the two Alpha-lactalbumin genes with those of five casein genes reveals the presence of a highly conserved region extending from position -140 to -110 in all seven sequences examined, suggesting a possible regulatory role in the hormonal control or tissue-specific expression of milk protein genes in the mammary gland.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11131R-A750)
Supplier: Bioss
Description: Alpha-lactalbumin is the B protein of lactose synthetase secreted by the mammary epithelial cells. It is a potent Ca2+-elevating and apoptosis-inducing agent with broad, yet selective, cytotoxic activity. Multimeric lactalbumin has been shown to kill all transformed, embryonic and lymphoid cells tested, but not mature epithelial elements. This suggests that milk contributes to mucosal immunity not only by furnishing antimicrobial molecules but also by policing the function of lymphocytes and epithelium. ?lactalbumin may be helpful in discovering the site of origin of metastatic breast tumours. Human lactalbumin contains 123 amino acid residues. Comparison of the 5' flanking sequences of the two Alpha-lactalbumin genes with those of five casein genes reveals the presence of a highly conserved region extending from position -140 to -110 in all seven sequences examined, suggesting a possible regulatory role in the hormonal control or tissue-specific expression of milk protein genes in the mammary gland.
UOM: 1 * 100 µl


Catalog Number: (614-0163)
Supplier: GERBER FUNKE
Description: LactoFlash is an accurate, reliable instrument for rapid analysis of the main constituents of milk. It directly measures fat and SNF (Solids Non Fat) and then calculates density, protein, lactose and freezing point.
UOM: 1 * 1 items


Catalog Number: (HIMEM1003-500G)
Supplier: HIMEDIA
Description: Controlled quality of materials. The different media comply with international standards. For the method of preparation and technical data sheets, please contact the customer service.
UOM: 1 * 500 g


Catalog Number: (BOSSBS-6634R-A680)
Supplier: Bioss
Description: Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex. Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides. This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognises a wide spectrum of damaged DNA characterised by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognise and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. <i>in vitro</i>, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
UOM: 1 * 100 µl


Catalog Number: (MMMAS222)
Supplier: 3M
Description: Breathing Tube S-222 is a replacement breathing tube for use with 3M™ Versaflo™ Supplied Air System S-200+.
UOM: 1 * 1 items


Supplier: MP Biomedicals
Description: Neuraminidase (Sialidase: Acylneuraminyl hydrolase; EC 3.2.1.18) From Arthrobacter ureafaciens lyophilised powder with salts. The salts are composed of sodium-potassium phosphate to give a solution of 10 mM phosphate buffer (pH 7) when enzyme is reconstituted with water to make activity of 1 unit per ml. Activity: >60 units/mg protein for NAN-lactose >25 units/mg protein for bovine submaxillary mucin >20 units/mg protein for colominic acid Protein is determined by the method of Lowry et al. with bovine albumin as a standard.6 Unit definition: One unit will liberate 1,0 µmole of N-acetyl-neuraminic acid (NANA) per minute at pH 5,0 at 37 °C, using either one NAN-lactose, bovine submaxillary mucin, or colominic acid as a substrate.

Catalog Number: (BOSSBS-15482R-A555)
Supplier: Bioss
Description: Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilise XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognises a wide spectrum of damaged DNA characterised by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognise and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-15482R)
Supplier: Bioss
Description: Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilise XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognises a wide spectrum of damaged DNA characterised by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognise and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-6634R-A350)
Supplier: Bioss
Description: Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex. Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides. This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-15482R-FITC)
Supplier: Bioss
Description: Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilise XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognises a wide spectrum of damaged DNA characterised by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognise and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-6634R-FITC)
Supplier: Bioss
Description: Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex. Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides. This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
UOM: 1 * 100 µl


Catalog Number: (HIMEM792-500G)
Supplier: HIMEDIA
Description: For the isolation and differentiation of urinary pathogens on the basis of lactose fermentation.
UOM: 1 * 500 g


Catalog Number: (PRSI92-049)
Supplier: ProSci Inc.
Description: Galectin-Related Protein (LGALSL) is a 172 amino acid protein that contains one Galectin domain. LGALSL does not appear to bind carbohydrates or lactose as the critical residues required for binding are not conserved. LGALSL may play a significant role in stimulating smooth muscle growth in developing alveolar wall vessels and the development of pulmonary capillaries.
UOM: 1 * 50 µG


Catalog Number: (BOSSBS-6634R-CY3)
Supplier: Bioss
Description: Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex. Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides. This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 8822222.
145 - 160 of 340
no targeter for Bottom